

City of Atlanta Green Infrastructure Initiative Incorporating Gl into Watershed Improvement Plans

SESWA 2016 Annual Conference

- Background on the GI program
- Overview of Atlanta watersheds
- Adding GI to WIP Process

What is Green Infrastructure?

Gray

Green

Slow, Infiltrate, and Clean Stormwater

Reduce impervious surfaces
Promote infiltration

Types of Green Infrastructure

Natural Green Infrastructure

Wetlands

Floodplains

Forests

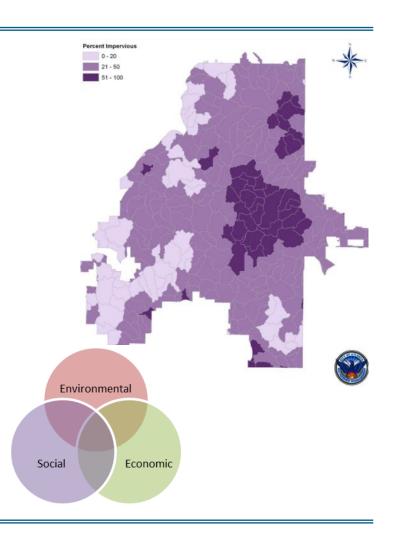
Stream Buffers

Engineered Green Infrastructure

Bioswales Rain Gardens Permeable Pavements Green Roofs

Why Green Infrastructure in Atlanta?

Environmental Protection


- Improves water quality
- Supports Mayor Reed's sustainability initiatives

Compliance

- NPDES permit Removing Barriers
- Prepares the City for potential changes in federal stormwater rules
- CSO Permits

Community

- Addresses drainage issues in redeveloping historic neighborhoods
- Maximizes infrastructure investments by further reducing combined sewer overflows and flooding

Pioneer Projects 1990s-2011

Green Roof - Atlanta City Hall

Bioretention - 14th St DWM office

Pervious Pavers - English Park

Cistern & Green Roof - Southface

Bioswale - Fernbank Museum

Wet pond, wetlands bench, sewer capacity relief, urban reforestation -Historic Fourth Ward

Bioretention - Adair Park

Porous Concrete - Felder St

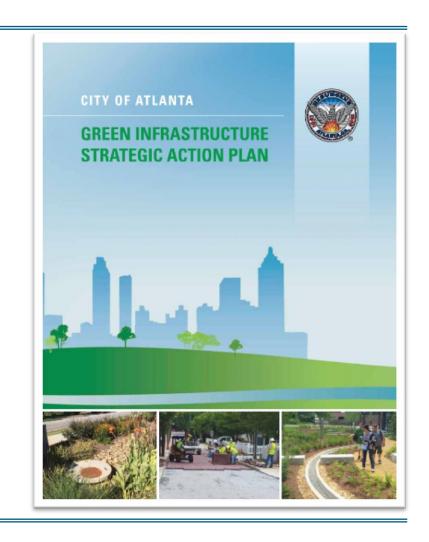
Bioswale - Klaus Building - GT campus

Focus and Commitment of Using GI

An Emerging GI Leader

- Post-development Stormwater Management Ordinance
- SE Atlanta GI Initiative
- Historic Fourth Ward Park
- Technical GI Training and Outreach Program
- Internal and External Partnerships

Ordinance recently awarded the Metropolitan North Georgia Water Planning District STREAM Award



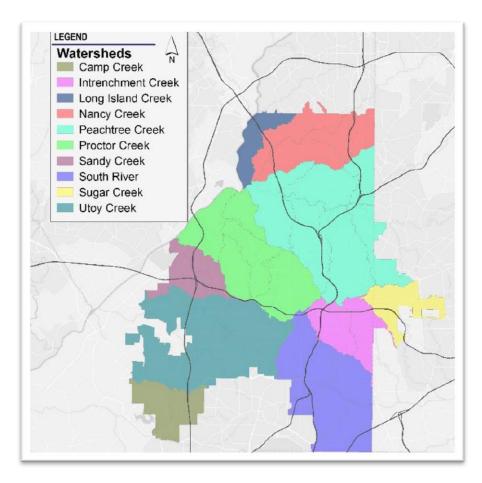
GI Action Plan

Key actions:

- Project
 Implementation
- Policy, funding, and planning
- Partnering and outreach
- Data tracking and technical analysis

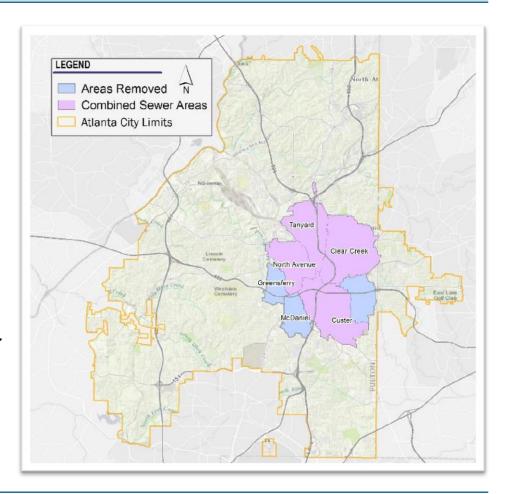
WIPs and the GI Action Plan

- The first component of the Action Plan is Project Implementation
- Prior to implementation Projects must first be identified
 - WIPs provide the opportunity to review entire watersheds and site potential GI projects



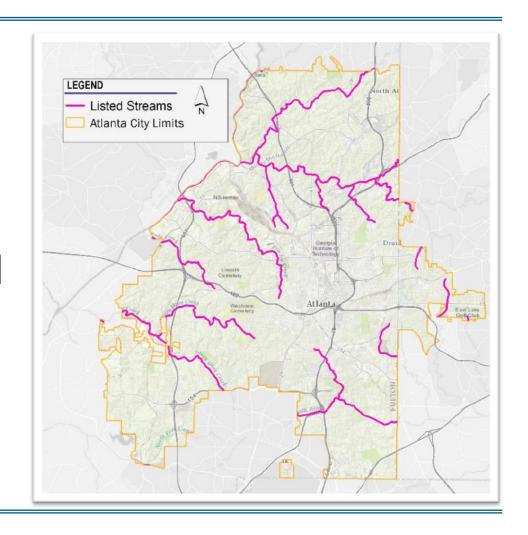
Atlanta Watersheds

- City Extents
 - 136 mi²
- Watersheds
 - Divided into 10 primary watersheds
 - 7 watersheds flow west into the Chattahoochee and eventually to the Gulf of Mexico
 - 3 watersheds flow east into the South River and eventually the Atlantic Ocean
- WIPs completed for 3 watersheds and underway for the remainder of the watersheds



Combined Sewer Areas

- Combined sewer areas:
 - Originally 6 CSAs
 - 2 have been separated
 - A portion of one has been separated
- CSAs cover $\sim 15 \text{ mi}^2 \text{ or}$ 11% of the city area.



303d/305b Listed Streams

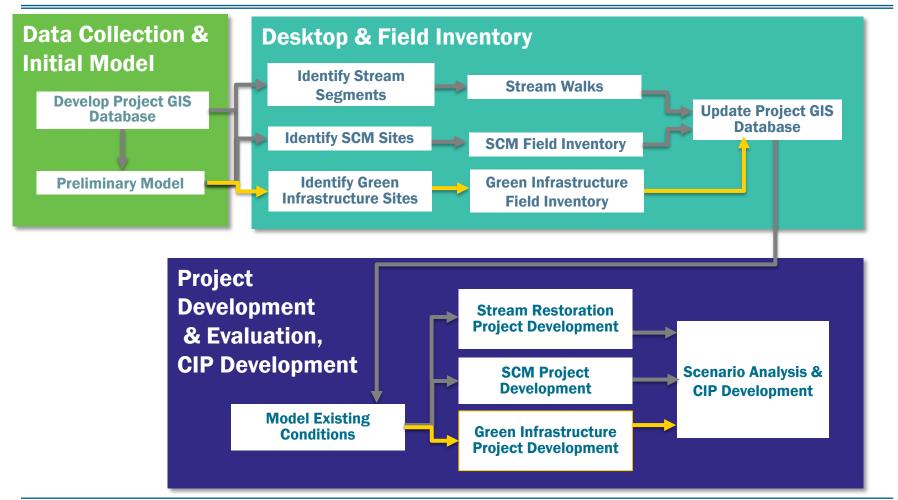
- 22 listed stream segments
- 71 miles of listed streams
- All listed for fecal coliform
- Several listed for Biota-M and Biota-F

Watershed Improvement Plan

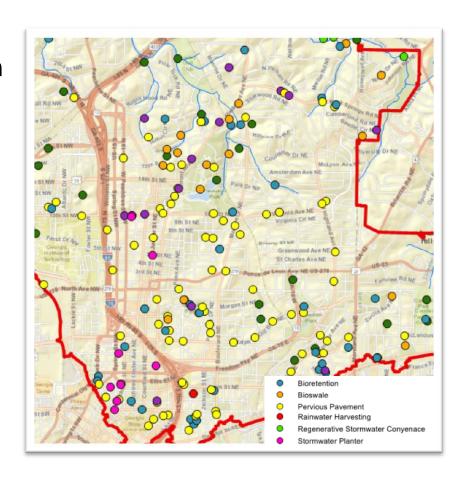
- A plan focused on improving water quality in a watershed. Plans generally include:
 - An assessment of the water quality in the study area
 - Development of actions to improve water quality:
 - Specific watershed improvement projects (stream restoration, stormwater ponds or green infrastructure)
 - Programmatic items (street sweeping, SSOs, utility crossings, etc.)
- Many communities need to develop watershed plans as a result of TMDLs, NPDES requirements or other water quality related objectives.

Overview of WIP Process

- Key WIP Components
 - Data Collection
 - Field Inventory
 - Project Development & Evaluation
 - Modeling
 - CIP Development
- Traditionally WIPs focused on stream restoration and larger stormwater structural controls



WIP Process

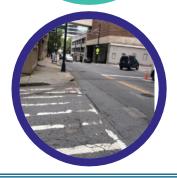


Incorporating GI into WIPs

- Over the course of the past several years, the WIP Process in regard to GI siting and project development has been refined
- Initial WIP
 - Sited 9 GI projects (0.5 projects/mi²)
 - Based primarily on previously identified projects and drainage complaints
- Most Recent WIP
 - Sited 252 GI Projects (8.1 projects/mi²)
 - More comprehensive siting process
 - Also, more detailed conceptual project development

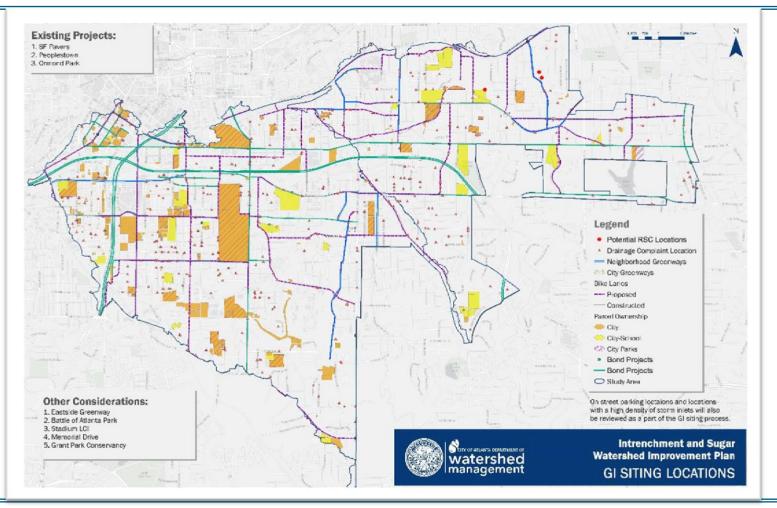
Determining Locations for Siting GI

- Due to small size,
 GI may be sited in
 numerous
 locations
- Worked to develop a process for determining siting locations
 - referred to as GI screening



GI Screening

- City owned property (including Atlanta Public Schools)
- Proposed bike lanes based on the Connect Atlanta Plan
- Areas of on-street parking
- Areas with a high density of stormwater inlets
- Drainage complaint locations
- Bond project data (planned projects from other departments)
- Watershed specific partnerships, existing plans and studies



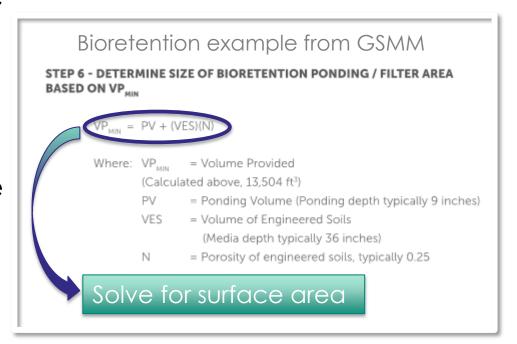
Example GI Screening Map

Siting Process

- Review all the locations developed as a part of the GI Screening
- Site Considerations:
 - Treat as much impervious or disturbed pervious area as possible
 - Work with existing drainage patterns/storm sewer
 - If possible, avoid utilities and trees
 - Look for site characteristics that lend themselves to being converted to GI measures

Types of GI Projects

- Focused on engineered
 GI:
 - Bioretention
 - Bioswale (enhanced swale)
 - Pervious pavement
 - Cisterns
 - Regenerative Stormwater
 Conveyance
 - Stormwater Planters



Desktop Project Development

- Determine drainage area and runoff volume
- Select project type
 - Site characteristics
 - Pollutant removal
- Use guidance in the Georgia Stormwater Manual to back out the needed footprint for project
- Develop polygon footprint based on calculated size

Desktop Siting

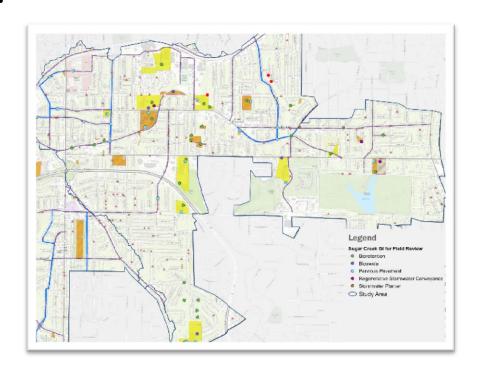
- Size project to treat runoff volume if possible
 - Adjust ponding depth and/or media depth if needed
- Note site questions for field review
- Repeat process for entire study area

Field Review & Evaluation

- 2-person teams visit each project
- Collect standard information at each site
- Mobile data collection
 - i-Pad mini with Fulcrum app
- Field sheet for each project
 - Quick mark up of site conditions, flow paths
 - Footprint modifications

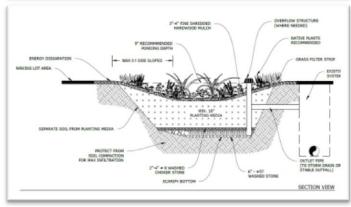
Field Data Collection

- Project type
 - Determine if assigned project type is suitable for site
- Project Recommendation
 - Are site drainage patterns the same as shown in GIS?
 - Will runoff go to proposed project? What needs to be done to get water to the proposed project?
 - Can additional areas be added? Roof drains, etc.?
 - Any site characteristics that will affect the project or make it difficult to build?
- Desktop notes
 - Address questions from desktop notes
- Standard Photos
 - Downstream across site
 - Upstream across site
 - Upstream / Area draining to project
 - Downstream of proposed project



Project Refinement

- Refine project concept:
 - Remove unsuitable projects
 - Edit and modify other projects based on field evaluation
- Develop information needed to:
 - Calculate pollutant removal
 - Estimate Project Cost
 - Assign Project Score



Project Pollutant Removal

- Assigned based on project type
- Prorated for projects that don't treat full volume
- Water Quality model used to determine average annual pollutant removal for each project
 - Fecal Coliform
 - -TSS

Bioretention Example from GSMM

GI projects assigned Pollutant removal based on project type and storage volume

Planning Level Project Cost

- Construction Cost based:
 - Type of project
 - Project size
- Percent of Construction Cost:
 - Erosion Control
 - Mobilization/Demobilization
 - Traffic Control
 - Design and Permitting
 - Contingency

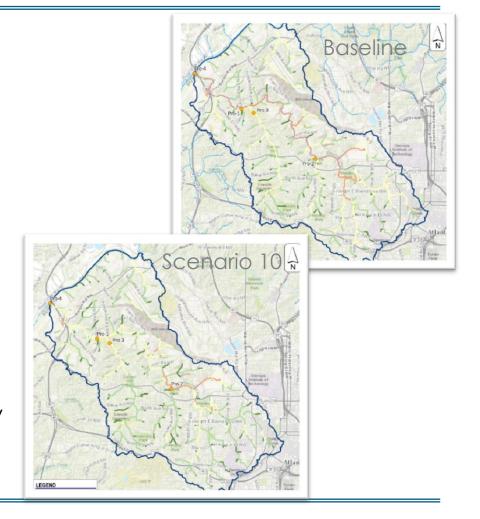
Project Evaluation Score

	Score	Weight	Range
Environmental			
Pollutant Removal	1-5	2	2-10
Proximity to listed streams	1-5	2	2-10
Economic			
Bundle with other projects	1-5	1	1-5
Public land	1-5	1	1-5
Cost benefit	1-5	2	2-10
Social			
Greenspace link	1-5	1	1-5
Improves Safety	1-5	0.5	0.5-2.5
Protects existing infrastructure	1-5	0.5	0.5-2.5
Project Evaluation Score			10-50



Finalize Project Concept

- 2-page summary sheets developed for each project
- Includes:
 - Project Description
 - Cost
 - Watershed and Site Characteristics
 - Project Benefits
 - Project Evaluation Score
 - Site Map and Photos



Examples of Modeling Scenarios

- Scenario 1 Baseline Conditions
- Scenario 2 Existing Conditions
- Scenario 3 –Retrofit/Redevelopment
- Scenario 4 Green Infrastructure (GI)
- Scenario 5 Street Sweeping
- Scenario 6 SCM and Stream Restoration Projects
- Scenario 7 Sanitary Sewer Overflow (SSO) Reduction
- Scenario 8 Combined Sewer Overflow (CSO) Reduction
- Scenario 9 Publicly Owned Land
- Scenario 10 Combination of Publicly Owned Land and Highest Scoring Projects

Benefits of GI in WIPs

- It's a logical addition another tool in the tool box for WIP development
- Fits into the City's Goals of being a leader in GI
- Provides a comprehensive review of watersheds for potential GI locations
- Provides the City with a large list of potential projects that can be compared based on evaluation score, benefits and estimated project cost

Questions?

Julie Owens, City of Atlanta – Jowens@AlantaGa.gov Lori Visone, Brown and Caldwell – Lvisone@brwncald.com

